If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10c^2-19c+6=0
a = 10; b = -19; c = +6;
Δ = b2-4ac
Δ = -192-4·10·6
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-11}{2*10}=\frac{8}{20} =2/5 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+11}{2*10}=\frac{30}{20} =1+1/2 $
| 4x+6=2(-3x+5)-4 | | w+7.32=9.22 | | 9=p-15 | | 0.80x=60 | | n1=27 | | 10^2-19c+6=0 | | (4a+27)^2=48 | | 0,52*x=1200 | | 10-2(x-5)=3x | | x18=7 | | 176.45+c=312.56 | | 4(t+1/4)=3 | | 8x−38=83−3X | | 2500=20x | | n-142=182 | | 6=0.1=0.0005x | | 14^2x-5=15 | | 7x-23=-8x+22 | | 3x2+x+-14=0 | | 7=4-u | | g-8.1=2.8 | | x3+x2+x-14=0 | | 28=2h+6 | | 2(j-2)+3(2j+9)=-1 | | 8 | | -7*16^(5b)+5=47 | | 3(h-87)=-12 | | 140×x÷20=14 | | F(x)=3x4-6x+2 | | C(x)=0.8x^2-352x+47684 | | (8x+27)+67=180 | | 26=f+12 |